
lilt. J. Solids Slructu", Vol. 23. No.8. pp. 1191-1203. 1987
Prinled in Greal Britain.

oo2()...7683/87 53.00+.00
© 1987 Pe'pmon Joumal.l.ld.

A SIMPLIFIED ANALYSIS OF THE EFFECT OF
TRANSVERSE SHEAR ON THE RESPONSE OF

ELASTIC PLATES TO IMPACT LOADING

R. K. MITrAL
Department of Applied Mechanics, Indian Institute of Technology, Hauz Khas,

New Delhi 110016, India

(Received 30 May 1986; in revised/arm September 1986)

Abstract-This investigation deals with the problem of transverse impact on an elastic plate for
which the effect of deformation due to transverse shear cannot be neglected, e.g. a thick plate or
one reinforced with aligned fibres in its plane. Closed-form solutions have been obtained, after
minor approximation, to determine the deflection and bending moment at the point of impact.
These solutions are independent of boundary conditions in the "early state" of the impact phenom­
enon. Further, using Hertz's contact law, it is possible to determine the history of the impact force
produced when a compact body strikes the plate. It is shown that a single parameter can describe
the influence oftransverse shear on the impact force as well as On the deflection and bending moment
at the impact point. Finally, numerical results are presented to show that the influence of shear on
deflection is much smaller than that on impact force or bending moment.
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flexural rigidity of plate, Eh' /12(I-v 2)

Young's moduli of plate and the impacting body, respectively
impact force
dimensionless impact force
shear modulus of plate in transverse direction
thickness of plate
Hertz's constant
components of bending moment per unit length
twisting moment per unit length
bending moment at the point of impact
dimensionless bending moment at the point of impact
mass of the impacting body
distributed load per unit area on the surface of the plate
radius ofcurvature of the impacting body near the point of impact
reference time
time, impact occurs at t = 0
velocity of the impacting body at t = 0
deflection of the mid-plane of the plate
deflection at the point of impact
dimensionless deflection at the point of impact
displacement of the impacting body
Cartesian coordinate axes, located in the mid-plane of the plate. Point of impact is (0, 0)
components of rotation of the mid-plane '
plate parameter, (1/8) .J(1IDhp)
shear parameter
impact parameter
Poisson's ratios of plate and the impacting body, respectively
mass density of the plate material
dimensionless time.

I. INTRODUCTION

Most of the previous studies[I-8] dealing with the response of elastic plates subjected to
impact loads are based on the classical plate equation in whieh the effects of transverse
shear and rotatory inertia are neglected. In these studies series solutions or closed-form
solutions based on some simplifying assumptions have been obtained to determine the
deflection and bending strain when a plate is subjected to a time-dependent load. Moreover,
using the deflection so obtained and Hertz's contact law it is possible to predict the contact
force developed when an elastic body impacts on the plate. Schwieger[6] and Mittal et al.[S]
have experimentally verified the predictions of the classical theory for the case of a thin
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aluminium plate struck by a steel ball at its centre. It was reported that while there is a
good agreement between experimental and predicted values of the maximum contact force
and maximum deflection, the agreement for maximum bending strain was not satisfactory,

A recent investigation on beams[9] has shown that transverse shear, which depends
upon the radius ofgyration of the beam cross-section and the ratio E/Gt of Young's modulus
in the longitudinal direction and shear modulus in the thickness direction, modifies the
dynamic response of the beam. Since the ratio E/G l can be quite high for fibre-reinforced
plastics (FRP) and drop-weight tests are often recommended for the dynamic character­
ization of FRP structural components, the need for the present investigation was felt.

The aim of the present work is to obtain closed-form solutions, without neglecting
shear effects, for the deflection and bending moment caused in a plate subjected to a time­
dependent load. Further, on the basis of these results, it is proposed to obtain the history
of the contact force between the plate and the striking mass. Lastly, this effect of transverse
shear on the response ofa plate is clearly brought out by considering two practical examples,

2. BASIC EQUAnONS AND ANALYSIS

We consider a plate which is transversely isotropic in the x-y plane, i.e. Ex = Ey = E;
vxy = V yX = v; Gxy = E/2(1 +v)and Gx : = Gyz = GI . The flexural motion of this plate, includ­
ing the effect of shear deformation is governed by the following differential equations[ I0] :

( 1)

(2)

(3)

Mindlin[ll] has shown that the classical theory ofplates with shear corrections is sufficiently
close to the exact three-dimensional theory. The addition of rotatory inertia terms increases
the mathematical complexity but produces only a very small improvement. For shear
correction Mindlin used a factor of n2/12 instead of 5/6 in eqns (1)-(3). Some authors[12]
used 2/3.

The bending and twisting moments, per unit length are given by

(of3 oa)M =D -+v-
y oy ox

(4)

For classical impact problems Eringen[4] introduced a kernel (Green's function) so
that the deflection is obtained as a linear homogeneous functional of the impact force
history. The kernel itself is obtained as a series solution of the corresponding free vibration
problem. Further, several authors[5-8] have approximated the series to obtain a closed­
form solution for the plate problem when the shear effects are neglected. This approximation
is valid in the "early state" of the impact phenomenon, i.e. till the fastest flexural waves
return, after reflection at the boundaries, to the point under consideration. It has been
analytically shown, as may be intuitively expected, that the exact nature of the boundary
conditions has no influence on the dynamic behaviour of the plate during the "early state",
In particular, if the impact phenomenon lasts for a period much less than the time taken
for the return of the fastest flexural waves to the point of impact then the plate may be
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assumed to be infinite in extent. This statement has been theoretically verified[9] for a beam
subjected to a concentrated load at its centre irrespective of whether the shear effects are
considered or not.

Therefore, in the present work the plate has been assumed to be infinite and a con­
centrated time-dependent load F(t) is applied at x =: 0, y = 0. Thus in cqn (3)

q(x,y,t) = F(t)c5(x-O)c5(y-O) (5)

where c5 represents the Dirac-delta function. For this plate the solution of eqns (l )-(3) can
be easily obtained using the Fourier transform method[13]. Introduce the following Fourier
transforms:

1 foo fooA(e, '1, t) = - IX(X,y, t) ei({x+~y) dx dy
2n -00 -00

1 foo fcoB(e, '1, t) = - (J(x,y, t) ei({x+~y) dx dy
2n -00 - 00

and

I foo fooWee, '1, t) = - . w(x,y, t) ei({x+~Y) dx dy
2n -00 -00

1 fOO foo .Q(e,'1,t) =- q(x,y,t) e'({X+~Y) dx dy
2n -00 - 00

(6)

where eqn (5) has been used for simplifying the last transform. Using the plate equations,
eqns (1)-(3) it is easily shown that

and

-il1 W
B=-­

1+br2 (7)

where

W(e,'1,t) =: 2 I h f' F(t')sin w(t-t') dt'
np Jo w

(8)

and

(9)

(10)

The deflection w(x, y, t) can be obtained by taking the reverse transform of eqn (8). Thus

SAS 23: 8-H
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Fig. I. Comparison of the exact values of 1(0) with the approximate curve representing

1(0) = e- bO
' +2bO ' .

I fOO fOO i' sin w(t- t')w(x,y, t) = 2 e-i(~x+~y) F(t') dr'.
(2n) hp -00 -00 0 w

In particular the deflection at the point of loading is

1 i' ,foo foo sin wet - t')
wo(t) = w(O, 0, t) = (2 )2h F(t ) d~ dry

n p 0 -00 -C<) w

(11 )

(12)

where it has been assumed that the conditions for the change of order of integration hold.
Further, the double integral appearing in eqn (8), denoted by I, is rewritten in terms of
polar coordinates (r, cJ». After integration with respect to cJ>, we get

2 ioo sin w(t- r') d
1= n r r.

o w
(13)

This integral cannot be evaluated directly and, therefore, we seek an approximating function
for the integrand in the same manner as discussed in Ref. [9]. The procedure consists of
replacing r by a new variable 0 such that

(14)

and then rewriting the integrand as an explicit function of O. This necessitates expressing
2(1 +br2)3/2J(2+br2) as a function 1(8) of 0 only. A close approximation has been found
numerically for 1(0) which is valid for 0 ~ 0 < 00. Thus

(15)

This approximation is very close, approaching the exact values when 0 -0 0 as well as when
e-000. A discernible difference occurs only in a small interval near b0 2 = 2.0. The exact
and approximate values of 1(0) for 0 ~ 6 ~ 8 are shown in Fig. 1. In view of the above­
mentioned replacements and introducing the notation a = .J(D Jph) and T = t - r' we have
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21t ra> I. 2 b02 2
I ~ -;; Jo (1 sm (aTO ){e- +2M } dO,
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(16)

The integration of the first term in eqn (16) is easily obtained while the second term presents
some difficulties. Its value fluctuates between 0 and 21aT. The same integral has been
investigated in Ref. [8] where it was shown that a weak convergence for this integral can
be obtained and the converged value is IlaT. A similar result can be obtained from a
physically more intuitive viewpoint. Suzuki[14] has considered the impact of a rigid mass
on a viscoelastic circular plate for which he has shown that the amplitude of the central
deflection decays exponentially and the rate of decay is higher for higher modes. Thus, the
converged value of the second integral of eqn (16) can be obtained by considering the
limiting operation

which again equals I/aT. Substituting the value of lin eqn (12) we finally get

I f' ,{I _I [a(I-I')J b},
Wo = 21thpaJo F(I) 2 tan b + a(t-/') dt. (17)

Equation (17) yields the classical result when shear effects are neglected, i.e. b = O. Then it
is easily seen that

(18)

The term (l/8).J{lIDhp) is known as the plate parameter (ap). This result was first obtained
by Boussinesq[1] using a different method.

Now we consider the expressions for the bending moment. Taking Fourier transforms
on both sides of eqn (4) and using expressions (6) we get after some simplification

and {I 9)

where M" and My are the Fourier transforms of M" and My, respectively. For an isotropic
or a transversely isotropic plate M" = My at the point of loading. This is always true for
an infinite plate but true only in the "early state" for a finite plate. Due to this equality of
bending moments it can be shown that M" = My = !(.M"+My). Then the Fourier transform
Mo of M o is given as

(20)

where r2 = ~2+,,2 as before. Hence at the point of loading
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(1+1')/)1" f' WI"
Mo(t) = ~')~ .:;- . -----" d~ dl1

... ...rc • - x _ J I +br

(I +V)DJt'1 'iT. sin w(t-t') r J

= F(t) -- dr
4rcph 0 0 ill l+br2 '

(21 )

Now consider the integral

J ioo sin w(t - t') r J

= --dr
owl+br2 (22)

where a and T have been defined earlier. This integral is rewritten (without any approxi­
mation) as

where () has been defined in eqn (14). Using integral tables (p. 473, rule 5 of Ref. [15]) and
after substitution and simplification we finally get

1+v[ (t F(t') 2a (I {2 } ]
Mo(t)= 8rc Jot_t,dt'+J;JoF(t')K 1 ba(t-t') dt' (23)

where K j is the modified Bessel's function of the second kind and first order. Again when
shear effects are neglected, i.e b = 0 the second term vanishes since K I (00) = O. In that case
we regain the classical result, namely

Mo(t) = I8+ v (I F(t'~ dt'.
7l: Jo t- t

Equations (17), (23) and (24) involve integrals of the type

i' I
-dt'

o t- t'

(24)

which is not convergent. Schwieger[6] has overcome this difficulty by replacing the upper
limit of the integral t by I-to where to is a positive time constant, which was takenas
(h 2/16).j(pID). This expression was arrived at by comparing the results of Schwieger's
theory with those obtained by Sneddon[3] for a plate impact problem in which the impact
load is distributed over a small area instead of being a point load. The justification for this
comparison is that in an actual plate a small region of the plate near the point ofapplication
of the load will experience very high contact stresses and possibly some plastic deformation
which will spread the load over a non-zero area. Therefore, in the present theory Schwieger's
correction will be applied.

3. CALCULATION OF IMPACT FORCE

For the calculation of the impact force produced during impact due to a compact
mass, we use Hertz's theory for the contact force between two bodies. Since the time of
contact between the striking body (assumed to be spherical for the sake of simplicity) and
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the plate is usually much larger than the time period of the lowest modes of vibration of
the sphere, Hertz's theory is still applicable although it considers only a static contact
between the bodies (see Rayleigh[16]). According to Hertz's theory, the relationship between
impact force F(t) and the relative approach (IV, - IVo) is given as

where for a flat plate

4 £Er l / 2
K _ _ "

- 3 E,(I-v 2)+E(I-v;>"

Also the equation of motion of the ball is

iPw,
F(t) = -m, ot2 •

(25)

(26)

(27)

The value of F(t) can be obtained from eqns (25), (27) and (17). The resulting integral
equation is

I i'K- 2/3{F(t)}2/3 = vot - - F(t') (t-1') dl'
m, 0

This equation can be rewritten in the following non-dimensional form:

where, = tlTo and " = I'ITo are dimensionless times such that the reference time To is
given by the following expression:

(30)

Moreover, the dimensionless force fer) is given as

Equation (29) also contains two parameters

(31)

and p' _ b _ 9.6pA D
- aTo - --;;;: G

l
•

(32)

For an isotropic plate

p' =~ )Jz3p

I-v m.

where Ais the impact parameter and p' represents shear effects. Interestingly, for an isotropic
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Table I. Variation ofJm.. and To as functions of;' and (J' for ;. ~ 1.0

), "" 0.2 A= 0.5 A= LO
{l' Jma, To {J' fmax To (J' Jm., To

2.G 0.476 5.7 0.5 0.51 5.0 0.25 0.423 5.4
LO 0.614 4.6 0.1 0.687 3.8 0.10 0.490 4.8
0.5 0.74 4.0 0.05 0.719 3.7 0.05 0.524 4.5
0.2 0.856 3.5 0.02 0.737 3.6 0.02 0.543 4.4
0.1 0.901 3.4 0.01 0.743 3.6 0.01 0.549 4.4
0.0 0.945 3.3 0.0 0.75 3.6 0.0 0.556 4.4

Table 2. Variation of Jma. as a function of ;. and /3'
for;' ~ 2.0

;.
p' 2.0 5.0 10.0 20.0

0.1 0.317 0.154
0.05 0.339 0.164 0.088 0.046
0.01 0.359 0.174 0.093 0.048
0.005 0.362 0.176 0.094 0.049
0.0 0.365 0.177 0.095 0.049

0.6 P'= 0.0
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E 0.3....
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0 1.0
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Fig. 2. Variation of dimensionless impact force J(T) with dimensionless time T for ). = 1.0 and
various values of the shear parameter /3'

plate the shear parameter is proportional to the ratio of the mass of a cube of the plate
material with side h and the mass of the striking ball.

Equation (29) is a non-linear integral equation which can be solved numerically by the
step-by-step method due to Timoshenko[17]. The last term of this equation shows a
singularity as t - t'. Therefore, the appropriate size of steps was chosen by examining the
convergence of the solution f(r) by progressively reducing their size. It was found that a
size of 0.01 yielded f(t) quite close to the converged value and at the same time the
computation time was not very high. Solutions were obtained for A. = 0,2,05, 1.0, 2.0, 5.0,
10.0 and 20.0. The choice of {J' was not arbitrary but was chosen on the basis of the
dimensions of plates and elastic con~tants of materials used in experiments conducted by
many authors. It was observed that for most plates (Jl < 1.0. A summary of the important
results of numerical computations for all the choices of Aand P' that were considered is
given in Tables I and 2. Also, Figs 2 and 3 show the variation of dimensionless impact
force f(r) as a function of dimensionless time r for two values of A. Comparing the two
figures one observes some similarities and some dissimilarities for the A. = 1.0 and 10.0
cases. In the former case, P' influences the entire impact force history while in the latter
case the influence is limited to a narrow region around the maximum. In both cases the
impact force rises to a maximum and then decreases. However, for the ;, = 1.0 case the
decrease is much faster while for the A. = 10.0 case it is very gradual. As a result, the time
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Fig. 3. Variation of f(T) with T for ~ = 10.0.

0.1

Fig. 4. A three-dimensional plot of the maximum dimensionless impact force f ..., impact parameter
~ and shear parameter {J'.

of contact between the ball and the plate for A. == 1.0 is much smaller than for A. == 10.0. In
Table 1 the maximum impact force frrw. and the time of contact t e, both in dimensionless
forms, are shown as functions of the impact parameter A. and the shear parameter fJ'. It is
seen that both these parameters strongly influence frrw. and t e• For higher values of A., the
dimensionless contact time t e exceeds 6.0. When the contact time is large the results of the
present theory should be used with caution because the flexural waves may return to the
point of impact after reflection at the boundaries of the plate. Therefore, in Table 2, only
the values of fmu. are given for various values of A. and fJ'.

Since A. and fJ' are the characteristic parameters of an impact problem it is necessary
to have a rational procedure to predict the maximum impact force for any values of A. and
fJ'. Figure 4 shows a three-dimensional plot of fmu. as a function of A. and fJ', for 0 < A. ~ 2.0
and 0 ~ fJ' ~ 0.1. Similar plots can be drawn for any other intervals of A. and fJ'. It is clearly
seen from Fig. 4 that in the range of fJ' considered here, fmu is almost linearly dependent
on fJ' for a fixed A.. The dependence on A. is, however, nonlinear. Using interpolation, it is
possible, to obtain frrw. with sufficient accuracy for any values of A. and fJ'. Another effect
of the presence ofshear is that the occurrence of the maximum impact force is progressively
delayed with increasing fJ'. This can be confirmed by referring to Figs 2 and 3.

4. CALCULATION OF DEFLECTION AND BENDING MOMENT AT IMPACT POINT

After obtaining the impact force history the deftection and bending moment at the point
of impact can be calculated with the help ofeqns (17) and (23), respectively. The influence of
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Fig. S. Variation of dimensionless deflection w; at the impact point with r for various.\ and {3'.

(J' on dimensionless deflection w~ for ). :::: 1.0 and 10.0 is shown in Fig. 5. The dimensionless
deflection is given as

42 ft { (t-t') {3'}
w~(r):::: n Jo /('0 ~ tan-

l T + r-,' dr. (33)

It is related to the actual deflection Wo at the impact point by the following relation:

(34)

As in the case of impact force, the influence of P' on deflection is negligible in the case when
). = 10.0 while it is quite discernible when). = 1.0.

Next we consider the evaluation of the bending moment at the point of loading. The
numerical integration of eqn (23) is facilitated by rewriting this equation in the foUowing
dimensionless form:

it f(t')
M~('r) :=: - -, {I +zKj(z)} dt'

o t-t
(35)

where

(36)

and

z = 2(t-r')/{J'. (37)

The computer evaluation of the modified Bessel's function K\(z} was carried out by a series
expansion as given by Abramowitz and Stegun[181. The integral ofeqn (35) consists of two
terms
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Fig. 6. Variation of dimensionless bending moment M~ at the impact point with t for). = 1.0
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Fig. 7. Comparison of Mt(t) and W~(T) for the classical and present theories when). = 1.0.

r(r) = [t f(r'~ dr'
Jo r-r

and

it F(r')
r(T) = -, [zK ,(z)] dr'.

o r-r

These two integrals were evaluated separately to emphasize the effect of transverse shear
on the bending moment M~. The magnitudes of rand r for the case when A. = 1.0 and
P' = 0.1 are shown in Fig. 6. It is seen that I" is not always negligible and in this case the
maximum contribution ofr amounts to about 30% ofr. The total dimensionless bending
moment M~(r) is also shown in the same figure.

Finally, it may be stated that the influence oftransverse shearon the load-point bending
moment is exerted in two ways. First, the transverse shear influences the impact force
history and secondly, for the given impact force history there is one extra term contributing
to the bending moment calculations. In the classical theory only integral I' is present.

5. CONCLUSIONS

In order to clearly bring out the main conclusions of the present investigations, Figs
7 and 8 are useful where the deflection and bending moment histories (both in dimensionless
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Fig. 8. Comparison of Mt(r) and wt(r) for the classical and present theories when ;. = 10.0.

form) are compared with their classical counterparts. Again, the same two values of }" i.e.
1.0 and 10.0 were chosen. The shear parameters for the two cases were 0.1 and 0.05,
respectively. Classical cases are represented by P' = 0.0. On the basis of Figs 2, 3, 7 and 8
the following main conclusions are drawn:

(1) P' has a significant influence on the impact force and bending moment and only a
marginal influence on the deflection under the point of loading.

(2) Both these effects are higher for a lower value of )..
(3) The maximum force is higher for the classical case, as compared to the case when

shear effects are taken into account. On the other hand the maximum bending moment is
lower for the classical case. In fact, the bending moment and deflection are lower at all
times when shear effects are neglected. The results of our analysis agree qualitatively with
those of Filipov and Skylar[12] who used the series method to investigate the shear and
rotatory inertia effects on the impact behaviour of finite rectangular plates.

(4) As mentioned in Section 2, the results of this analysis are valid for a period lasting
till the return to the impact point of flexural waves after reflection at the boundaries of the
plate.

The conclusions of the present investigations are directly relevant to the analysis of
drop-weight tests on thick plates of metals and alloys and even for moderately thick pia tes
of fibre-reinforced composites since the value of P' is high. The experimental data of these
tests is generally analysed on the basis of the classical plate theory ({3' = 0) and hence it can
lead to erroneous values of material parameters such as dynamic flexural strength, etc.
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